Патент на истребитель Т-50 ПАК ФА - Стр. с 7 по 11 включительно
pro-samolet.ru   
В начале 2012 год опубликован патент на российский самолет Т-50 ПАК ФА - перспективный авиационный комплекс фронтовой авиации, который датирован июнем 2010 года. На Интернет-форумах началось обсуждение этого документа.
Содержание
Патент на истребитель Т-50 ПАК ФА
Страницы 7-11

Патент

силовую установку, двигатели которой расположены в мотогондолах 6. Мотогондолы 6 двигателей разнесены друг от друга по горизонтали, а оси двигателей ориентированы под острым углом к плоскости симметрии самолета в направлении полета.

Наплыв 2 фюзеляжа 1 расположен над воздухозаборниками 7 двигателей и включает управляемые поворотные части 8. Поворотные части 8 наплыва 2 являются передними кромками средней уплощенной части фюзеляжа 1.

Консоли 3 крыла, плавно сопряженные с фюзеляжем 1, снабжены механизацией передней и задней кромок, включающей поворотные носки 9, элероны 10 и флаппероны 11.

ЦПГО 4 установлено на боковых хвостовых балках фюзеляжа 1. ЦПВО 5 установлено на пилонах 12, закрепленных на боковых хвостовых балках фюзеляжа 1. На фронтальной части пилонов 12 расположены воздухозаборники 13 продува мотоотсеков и теплообменников системы кондиционирования. Установка ЦПВО 5 на пилонах 12 позволяет увеличить плечо опор оси ЦП ВО 5, что, в свою очередь, обеспечивает снижение реактивных нагрузок на силовые элементы каркаса планера самолета и, соответственно, снизить вес. Увеличение плеча опор ЦП ВО 5 обусловлено тем, что верхняя опора размещена внутри пилона 12, что, собственно, и позволило увеличить плечо опор (расстояние между опорами). Кроме того, пилоны 12 являются обтекателями гидроприводов ЦПВО 5 и ЦПГО 4, что позволяет за счет выноса гидроприводов за пределы фюзеляжа 1 увеличить объем грузовых отсеков между мотогондолами 6.

Входы воздухозаборников 7 двигателей расположены по бокам носовой части фюзеляжа 1, за кабиной экипажа, под поворотными частями 8 наплыва 2 и выполнены скошенными в двух плоскостях - относительно вертикальных продольной и поперечной плоскостей самолета, при этом нижняя кромка входов воздухозаборников 7 двигателей расположена ниже обводов фюзеляжа 1.

Двигатели оборудованы поворотными осесимметричными реактивными соплами 14, поворот которых осуществляется в плоскостях, ориентированных под углом к плоскости симметрии самолета. Реактивные сопла 14 двигателей выполнены с возможностью синфазного и дифференциального отклонения для осуществления управления самолетом путем отклонения вектора тяги. Схема ориентации реактивных поворотных сопел 14 отображена на фиг.4, на которой отображены: срезы 15 реактивных поворотных сопел 14 двигателей, оси вращения 16 реактивных поворотных сопел 14 двигателей и плоскости 17 вращения поворотных реактивных сопел 14 двигателей.

Самолет обладает малой заметностью в радиолокационном диапазоне длин волн, а благодаря обеспечению сверхманевренности - выполняет задачи в широком диапазоне высот и скоростей полета.

Увеличение аэродинамического качества на дозвуковых скоростях полета достигается за счет формирования поверхности средней части фюзеляжа 1 (за исключением носовой и хвостовой частей) в продольном отношении (в продольных сечениях) набором аэродинамических профилей и применением поворотных частей 8 наплыва 2, что позволяет включить поверхность фюзеляжа 1 в создание подъемной силы.

Высокий уровень аэродинамического качества на дозвуковых скоростях полета достигается за счет применения крыла с консолями 3 трапециевидной формы в плане с большой стреловидностью по передней кромке, большого сужения, с большим

Стр.7


Патент

значением длины корневой хорды и малым значением длины концевой хорды. Такой набор решений позволяет при больших значениях абсолютных высот крыла, особенно в корневой части, реализовать малые значения относительных толщин крыла, что снижает значения прироста силы лобового сопротивления возникающего на транс- и сверхзвуковых скоростях полета.

ЦПГО 4 обеспечивает возможность управления самолетом в продольном канале при синфазном отклонении и в поперечном канале при дифференциальном отклонении на транс- и сверхзвуковых скоростях полета.

ЦПВО 5 обеспечивает устойчивость и управляемость в путевом канале на всех скоростях полета и обеспечивает функцию воздушного торможения. Устойчивость на сверхзвуковых скоростях полета при недостаточной потребной статической площади обеспечивается благодаря отклонению консолей ЦПВО 5 целиком. При возникновении возмущения атмосферы или порыва ветра в путевом канале осуществляют синфазное отклонение консолей ЦПВО 5 в сторону парирования возмущения. Такое решение позволяет уменьшить площадь оперения, уменьшив, тем самым, массу и сопротивление оперения и самолета в целом. Управление в путевом канале осуществляется при синфазном отклонении ЦПВО 5, а воздушное торможение - при дифференциальном отклонении ЦПВО 5.

Механизация крыла применяется для обеспечения управления подъемной силой и креном. Поворотный носок 9 крыла применяется для увеличения критического угла атаки и обеспечения безударного обтекания крыла, для полета "по огибающей поляры" на режимах взлета, посадки, маневрирования и крейсерского дозвукового полета. Элероны 10 предназначены для управления самолетом по крену при дифференциальном отклонении на режимах взлета и посадки. Флаппероны 11 предназначены для управления приращением подъемной силы при синфазном отклонении вниз на режимах взлета и посадки, для управления креном при дифференциальном отклонении.

Поворотная часть 8 наплыва 2 фюзеляжа 1 при отклонении вниз уменьшает площадь плановой проекции фюзеляжа 1 перед центром масс самолета, что способствует созданию избыточного момента на пикирование при полете на углах атаки, близких к 90 градусам. Таким образом, в случае отказа системы управления реактивных сопел 14 обеспечивается возможность перехода с режима полета на закритических углах атаки к полету на малых углах атаки без использования управления самолетом посредством отклонения вектора тяги двигателей. Одновременно поворотная часть 8 наплыва 2 является механизацией передней кромки наплыва 2 фюзеляжа 1. При отклонении поворотной части 8 наплыва 2 вниз на режиме крейсерского полета она выполняет функцию, аналогичную функции поворотного носка 9 крыла.

Применение боковых воздухозаборников, расположенных под поворотной частью 8 наплыва 2, позволяет обеспечить устойчивую работу двигателей на всех режимах полета самолета, во всех пространственных положениях за счет выравнивания набегающего потока на больших углах атаки и скольжения.

Расположение двигателей в изолированных мотогондолах 6 позволяет расположить между ними отсек для крупногабаритного груза. Для парирования разворачивающего момента при отказе одного из двигателей их оси ориентированы под острым углом к плоскости симметрии самолета так, чтобы вектор тяги работающего двигателя проходил ближе к центру масс самолета. Такое расположение двигателей, совместно с применением поворотных реактивных сопел 14, поворот которых осуществляется в

Стр.8


Патент

плоскостях, наклоненных под острым углом к плоскости симметрии самолета, позволяет осуществлять управление самолетом при помощи вектора тяги двигателей - в продольном, поперечном и путевом каналах. Управление в продольном канале осуществляется при синфазном отклонении поворотных реактивных сопел 14, создающих момент тангажа относительно центра масс самолета. Управление самолетом в боковом канале осуществляется посредством дифференциального отклонения реактивных сопел 14, создающих одновременно момент крена и момент рыскания, при этом момент крена парируется отклонением аэродинамических органов управления (элеронами 10 и флапперонами 11). Управление самолетом в поперечном канале осуществляется при дифференциальном отклонении поворотных реактивных сопел 14, создающих момент крена относительно центра масс самолета.

Снижение радиолокационной заметности самолета достигается за счет комплекса конструктивно-технологических мероприятий, к которым, в частности, относится формообразование обводов планера, включающее в себя:

  • параллельность передних кромок поворотной части 8 наплыва 2, консолей 3 крыла и горизонтального оперения 4; параллельность задних кромок консолей 3 крыла и горизонтального оперения 4, что позволяет локализовать пики отраженных от несущих поверхностей планера самолета электромагнитных волн и, тем самым, уменьшить общий уровень радиолокационной заметности самолета в азимутальной плоскости;
  • ориентацией касательных к контуру поперечных сечений фюзеляжа, в том числе фонаря кабины, под углом к вертикальной плоскости (плоскости симметрии самолета), что способствует отражению электромагнитных волн, попадающих на элементы планера с боковых ракурсов, в верхнюю и нижнюю полусферы, тем самым, уменьшая общий уровень радиолокационной заметности самолета в боковой полусфере;
  • скошенность входа воздухозаборников двигателей в двух плоскостях -относительно вертикальных продольной и поперечной плоскостей самолета, позволяет отражать электромагнитные волны, попадающие на входы воздухозаборников с переднего и боковых ракурсов, в сторону от источника облучения, тем самым, уменьшая общий уровень радиолокационной заметности самолета в этих ракурсах.

Формула изобретения

  1. Самолет интегральной аэродинамической компоновки, содержащий фюзеляж, крыло, консоли которого плавно сопряжены с фюзеляжем, горизонтальное и вертикальное оперение, двухдвигательную силовую установку, отличающийся тем, что фюзеляж снабжен наплывом, расположенным над входом в воздухозаборники двигателей и включающим управляемые поворотные части, средняя часть фюзеляжа выполнена уплощенной и образована в продольном отношении набором аэродинамических профилей, мотогондолы двигателей разнесены друг от друга по горизонтали, а оси двигателей ориентированы под острым углом к плоскости симметрии самолета по направлению полета.
  2. Самолет по п.1, отличающийся тем, что вертикальное оперение выполнено цельноповоротным с возможностью синфазного и дифференциального отклонения.
  3. Самолет по п.2, отличающийся тем, что цельноповоротное вертикальное оперение установлено на пилонах, расположенных на боковых хвостовых балках фюзеляжа, при этом на фронтальной части пилонов расположены воздухозаборники
  4. Стр.9


    Патент

    продува мотоотсеков и теплообменников системы кондиционирования.

  5. Самолет по п.1, отличающийся тем, что горизонтальное оперение выполнено цельноповоротным с возможностью синфазного и дифференциального отклонения.

  6. Самолет по п. 1, отличающийся тем, что реактивные сопла двигателей выполнены с возможностью синфазного и дифференциального отклонения.
  7. Самолет по п.1, отличающийся тем, что входы воздухозаборников двигателей расположены по бокам носовой части фюзеляжа за кабиной экипажа, при этом нижняя кромка входов воздухозаборников двигателей расположена ниже обводов фюзеляжа.
  8. Самолет по п. 1, отличающийся тем, что входы воздухозаборников двигателей выполнены скошенными в двух плоскостях - относительно вертикальных продольной и поперечной плоскостей самолета.
  9. Самолет по п. 1, отличающийся тем, что плоскости хорд консолей цельноповоротного вертикального оперения отклонены от вертикальной плоскости на острый угол.
  10. Самолет по п.1, отличающийся тем, что передние кромки поворотной части наплыва, консолей крыла и горизонтального оперения выполнены параллельными друг другу.
  11. Самолет по п.1, отличающийся тем, что задние кромки крыла и горизонтального оперения выполнены параллельными друг другу.

Стр.10


Патент

Истребитель Т-50

Т-50 ПАК ФА

Чертеж

Стр.11




 

Военная авиация
Самолеты
Второй Мировой войны
Советские самолеты Второй Мировой войны Британские самолеты Второй Мировой войны Американские самолеты Второй Мировой войны Французские самолеты Второй мировой войны
Немецкие самолеты Японские cамолеты Второй Мировой войны Итальянские самолеты Второй мировой войны  
ВВСБлог ВВС

Самолеты Второй Мировой войны

ВойнаВторая Мировая война

СписокКроме того, блог про самолеты посвящен более широкой теме